Socio-technical Organisation

Virginia Dignum

Challenge the future 1

(Agent) Socio-technical Organizations

Develop theory and tools for engineering complex multi-actor systems, integrating artificial and human partners, based on computational models of organization and adaptation

- Engineering socially intelligent systems
- Integrating systems in human organizations
- Taking into account
 - Predictability, Control, Adaptability, Macro / micro behavior...

Motivation: Theoretical Individuals and Organizations

- Individuals
 Autonomy
- Organization

 Regulation

- Individuals (agents) are motivated by their own objectives
 - May take up role in organization if that serves their purposes

Organizations have their own purposeMission exists independently of the agents populating it

Motivation: Practical Socio-technical interaction

- Concerns
 - Human-system/agent interaction
 - Individual interests
 - Global goals and requirements
 - Interdependencies
 - Control and monitoring
 - Social features for computer systems
 - Computer as social actor
 - Adaptation
- **T**UDelft

- Domains
 - Transport
 - Governance
 - Energy
 - Inter-organization processes
 - Training and coaching
 - Social-sensor networks
 - Search and rescue
 - Serious games

Our research at TU Delft

- Organization modeling and simulation
 - Analysis, design, redesign
- Formal organization models: modal logics
- Computational models of organization;
- Organizational models of (information) systems
- Applications
 - Service orchestration
 - Business processes / Logistic processes
 - Smart infrastructures
- Tools/Methods: OperA / OperA+ / OperettA /
- Formalisation: LAO

1. Agent organization: Main features

- Make a clear distinction between description of organization and description of agents
- Agents are
 - dynamic, autonomous entities that evolve within organizations
- Organizations
 - Are regulative environments that constrain the behaviors of the agents
 - or: may appear as the result of agents' activities

Specific concerns of agent organization

- Interaction among components cannot be completely foreseen at design-time
- Agents, organisation, and environment are 'independent' of each other
 - architecture choices
- Explicit representation of the system's inherent organizational structure

Formalisms for Agent Organization

Formal

- Representation of organization, environment, agents, objectives
 - Partial contribution to performance
- Representation of dynamics of organization
- Enable verification of organizational properties
- Realistic
 - Pragmatic issues (time, cost,...)
 - Based on positions/roles, not on specific agents
 - Responsibility vs. action vs. ability

9

Requirements

1.represent notions of ability and activity of an agent, without requiring knowledge about the specific actions available to a specific agent

- (open environments)
- 2. represent ability and activity of a group of agents
- 3.deal with temporal issues, especially the fact that activity takes time
- 4.accept limitedness of agent capability
- 5.represent the notion of responsibility for the achievement of a given state of affairs

Requirements (cont.)

- represent global goals and its relation to agents' activities (organizational structure)
- 7. relate activity and organizational structure
- 8. deal with resource limitations and the dependency of activity on resources (e.g. costs)
- 9. Deal with the fact that agent activities are NOT independent
- distinguish between organizational roles (positions) and agents' functionality
- deal with normative issues (representation of boundaries for action and the violation thereof)
- 12. represent organizational dynamics: evolution of organization over time, changes on agent population (reorganization)

More on LAO

- Journal papers on LAO
 - A logic of agent organizations. (Logic Journal of the IGPL, 2012
 - A formal semantics for agent (re)organization. Journal of Logic and Computation, 2013
- Background
 - Contracts and landmarks:
 - LCR (V. Dignum PhD, 2004)
 - Modal logics
 - Branching time: CTL* (Emerson and Halpern, 1990)
 - Deontic: BTLcont (F. Dignum and Kuiper, 1999)
 - Stit theories
 - stit operator (Pörn, 1974; Wooldridge, 1996)
 - Agency theory (Elgesem, 1997)
 - Responsibility and delegation (Governatori, 2002), (Santos, Jones, Carmo, 1997)

Challenge the future 12

LAO – Logic of Agent Organization

• Given an organization $O_i = (As_i, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$

 $\begin{array}{ll} 1. \ \varphi \in \mathcal{L} \Rightarrow \varphi \in \mathcal{L}_{\mathcal{O}} \\ 2. \ a \in As_{i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow C_{a}\varphi, G_{a}\varphi, H_{a}\varphi, E_{a}\varphi, \in \mathcal{L}_{\mathcal{O}} \\ 3. \ Z \subseteq As_{i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow C_{Z}\varphi, G_{Z}\varphi, H_{Z}\varphi, E_{Z}\varphi \in \mathcal{L}_{\mathcal{O}} \\ 4. \ a \in As_{i}, r \in R_{i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow C_{ar}\varphi, G_{ar}\varphi, H_{ar}\varphi, E_{ar}\varphi \in \mathcal{L}_{\mathcal{O}} \\ 5. \ a \in As_{i}, r, q \in R_{i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow member(a, o_{i}), role(r, o_{i}), play(a, r, o_{i}), \\ dep(o_{i}, r, q), incharge(o_{i}, r, q), know(o_{i}, \varphi), desire(o_{i}, \varphi) \in \mathcal{L}_{\mathcal{O}} \\ 6. \ r \in R_{i}, Z \subseteq R_{i}, \varphi \in \mathcal{L}_{\mathcal{O}} \Rightarrow I_{r}\varphi, I_{Z}\varphi \in \mathcal{L}_{\mathcal{O}} \end{array}$

Agent activity

- Agent Capability: C_aφ
 - Based on a partition of Φ into controllable and not controllable atomic propositions
- Agent Ability: G_aφ
 - $C_a \phi$ and a has influence in current world
- Agent Attempt: H_aφ
 - ϕ is true in a world reachable under influence of a
- Agent stit: E_aφ
 - $C_a \phi$ and ϕ is true in all worlds reachable from current world

Getting things done

DEFINITION 2.2 (Initiative)

Given an organization O_i in a model M_O , $O_i = (As_i, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$, and a role $r \in R_i(w)$, or a group $Z \subseteq R_i(w)$, initiative $I_r\varphi$, resp. $I_Z\varphi$, is defined informally as: r has the initiative to achieve φ iff an agent a playing r will eventually attempt to achieve φ or attempt to put another role in charge of φ . Formally:

$$\begin{split} w &\models I_r \varphi \text{ iff } w \models \exists a : play(a, r, O_i) \land \Diamond(H_{ar} \varphi \lor H_{ar} incharge(O_i, q, \varphi)), \\ \text{ for some } q \in R_i(w) \\ w &\models I_Z \varphi \text{ iff } \exists U \subseteq As_i(w) \forall a \in U \exists r \in Z : \\ w \models play(a, r, O_i) \land \Diamond(H_{UZ} \varphi \lor H_{UZ} incharge(O_i, Z', \varphi)), \\ \text{ for some } Z' \subseteq R_i(w) \end{split}$$

Organization properties I

1. Well defined organization (WD):

 $\begin{array}{l} M_O, w \models WD(o_i) \ \textit{iff} \\ M_O, w \models \textit{desire}(o_i, \varphi) \rightarrow \exists r : (\textit{role}(r, o_i) \land I_r \varphi) \end{array}$

2. Successful organization (SU):

 $\begin{array}{l} M_O,w\models SU(o_i) \hspace{0.2cm} \textit{iff} \\ M_O,w\models \textit{desire}(o_i,\varphi) \rightarrow C_{o_i}\varphi \wedge \exists r:(\textit{role}(r,o_i) \wedge I_r\varphi) \end{array}$

3. Good organization (GO):

 $M_O, w \models GO(o_i) \text{ iff} \\ if M_O, w \models (C_{o_i}\varphi \land I_Z\varphi) \text{ then } (\exists U \subseteq R_i(w) \\ and M_O, w \models dep(o_i, Z, U) \land C_V\varphi) \end{cases}$

Organization properties II

4. Effective organization (EF):

 $\begin{array}{l} M_O, w \models EF(o_i) \ \textit{iff} \\ M_O, w \models (I_r \varphi \land (\neg C_r \varphi) \land dep(o_i, r, Q) \land \\ \exists b, q : q \in Q \land play(b, q, o_i) \land know(o_i, C_{bq}\varphi)) \rightarrow \\ (\exists a : play(a, r, o_i) \land E_{ar} incharge(o_i, q', \varphi) \land q' \in Q \land \\ \exists b' : play(b', q', o_i) \land know(o_i, C_{b'q'}\varphi)) \end{array}$

5. Responsible organization (RES):

 $\begin{array}{l} M_O, w \models RES(o_i) \text{ iff} \\ M_O, w \models E_Z incharge(o_i, r, \varphi) \land X(H_{Vr}\varphi \to X(\varphi \lor I_Z\varphi). \end{array}$

Organizational dynamics

 S_O : current state of organization O D_O : desired state of organization O C_O : scope of control of agents in O C_A : scope of control of all agents

18

Reorganization operation

- Staffing: changes to the set of agents
 - staff+, staff-
- Restaffing: assigning agents to different roles
 - enact, deact, move
- Structuring: change to organization's structure
 - position+, position-, struct+, struct-
- Strategy: change to organization's objectives
 - *strateg+, strateg-*
- **Duty**: change to organization's initiative (*incharge* relations)
 - *duty+, duty=*
- Learn: change to organization's knowledge
 - learn+, learn-

Definition 9 (Reorganization Operations). Given an organization $O_i = (As_i, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$, in a model M_O , the reorganization operations over O_i in M_O are:

1.
$$w \models staff^+(o_i, a, U)$$
 iff $w \models \neg member(a, o_i) \land \mathcal{X}(member(a, o_i) \land \forall r \in U : play(a, r, o_i) \land \forall \varphi : C_{ar}\varphi \to know(o_i, C_{ar}\varphi))$, where $U \subseteq R_i(w)$
2. $w \models staff^-(o_i, a)$ iff
 $w \models member(a, o_i) \land \mathcal{X}(\neg member(a, o_i) \land \neg \exists r \in R_i : play(a, r, o_i))$,
3. $w \models enact(o_i, a, r)$ iff $w \models \neg play(a, r, o_i) \land \mathcal{X}(member(o_i, a) \land play(a, r, o_i))$
4. $w \models deact(o_i, a, r)$ iff $w \models play(a, r, o_i) \land \mathcal{X} \neg play(a, r, o_i)$,
5. $w \models move(o_i, a, r, q)$ iff
 $w \models play(a, r, o_i) \land \neg play(a, q, o_i) \land \mathcal{X}(play(a, q, o_i) \land \neg play(a, r, o_i))$
6. $w \models position^+(o_i, r)$ iff $w \models \neg role(r, o_i) \land \mathcal{X} \neg role(r, o_i)$
7. $w \models position^-(o_i, r)$ iff $w \models role(r, o_i) \land \neg \exists a \in As_i : play(a, r, o_i) \land \neg \exists q \in R_i : (dep(q, r, o_i) \lor dep(r, q, o_i)) \land \mathcal{X} \neg role(r, o_i),$
8. $w \models struct^+(o_i, (r \le q))$ iff $w \models role(r, o_i) \land role(q, o_i) \land \mathcal{X} \neg dep(o_i, r, q),$
9. $w \models struct^-(o_i, (r \le q))$ iff $w \models role(r, o_i)$ desire(o_i, d) iff $w \models \mathcal{X} \neg desire(o_i, d)$
11. $w \models strateg^-(o_i, d)$ iff $w \models \mathcal{X} \neg desire(o_i, d)$
12. $w \models duty^+(o_i, r, \varphi)$ iff $w \models \mathcal{X} \neg incharge(o_i, r, \varphi)$
13. $w \models duty^-(o_i, r, \varphi)$ iff $w \models \mathcal{X} \neg know(o_i, \varphi)$
15. $w \models learn^-(o_i, \varphi)$ iff $w \models \mathcal{X} \neg know(o_i, \varphi)$

Definition 10 (Safe Reorganization). For a semantic model M_O , given an organization $O_i = (As_i, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$, the reorganization operations over O_i in M_O are safe if the following properties hold:

$$\begin{array}{ll} 1. \models I_r \varphi \wedge staff^-(o_i, a) \to \mathcal{X}I_r \varphi \\ 2. \models C_Z \varphi \wedge staff^-(o_i, a) \to \mathcal{X}C_Z \varphi \\ 3. \models (I_r \varphi \wedge (\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge staff^-(O_i, a)) \to \neg E_{ar} incharge(o_i, q, \varphi) \\ 4. \models I_r \varphi \wedge deact(o_i, a, r) \to \mathcal{X}I_r \varphi \\ 5. \models C_Z \varphi \wedge deact(o_i, a, r) \to \mathcal{X}C_Z \varphi \\ 6. \models (I_r \varphi \wedge (\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge deact(o_i, a, r)) \to \neg E_{ar} incharge(o_i, q, \varphi) \\ 7. \models I_r \varphi \wedge move(o_i, a, r, q) \to \mathcal{X}(I_r \varphi \vee I_q) \\ 8. \models C_Z \varphi \wedge move(o_i, a, r, q) \to \mathcal{X}C_Z \varphi \\ 9. \models (I_r \varphi \wedge (\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge move(o_i, a, r, q)) \to \neg E_{ar} incharge(o_i, t, \varphi) \\ 10. \models (C_{o_i} \varphi \wedge I_r \varphi \wedge struct^-(o_i, (r \leq q)) \wedge \exists U \subseteq R_i(w) : \\ (dep(o_i, r, U) \wedge C_U \varphi) \to \mathcal{X}(\exists W \subseteq R_i(w) : (dep(o_i, r, W) \wedge C_W \varphi)) \\ 11. \models strateg^+(o_i, \varphi) \to \mathcal{X}(d_i \varphi \wedge \exists r : (role(r, o_i) \wedge I_r \varphi)) \\ 12. \models C_{o_i} \varphi \wedge duty^+(o_i, r, \varphi) \to \mathcal{X}\exists U \subseteq R_i(w) : (dep(o_i, r, q) \wedge play(b, q, o_i) \wedge know(C_{bq} \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge = \sigma_{ar} \varphi) \wedge dep(o_i, r, q) \wedge play(b, q, o_i) \wedge know(C_{bq} \varphi)) \to \mathcal{X} \exists r : (role(r, o_i) \wedge I_r \varphi) \\ 14. \models desire(o_i, \varphi) \to \exists r : (role(r, o_i) \wedge I_r \varphi)) \\ 15. \models I_r \wedge (\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge dep(o_i, r, q) \wedge play(b, q, o_i) \wedge earn^+(o_i, \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge I_r \varphi)) \\ 15. \models I_r \wedge (\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge dep(o_i, r, q) \wedge play(b, q, o_i) \wedge earn^+(o_i, \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge I_r \varphi)) \\ 15. \models I_r a(\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge dep(o_i, r, q) \wedge play(b, q, o_i) \wedge learn^+(o_i, \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge I_r \varphi)) \\ 16. \models I_r a(\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge dep(o_i, r, q) \wedge learn^+(o_i, \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge I_r \varphi)) \\ 15. \models I_r a(\forall a : play(a, r, o_i) \to \neg C_{ar} \varphi) \wedge dep(o_i, r, q) \wedge play(b, q, o_i) \wedge learn^+(o_i, \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge T_{ar} \otimes r) \wedge dep(o_i, r, q) \wedge play(b, q, o_i) \wedge learn^+(o_i, \varphi)) \to \mathcal{X}(\exists a : play(a, r, o_i) \wedge T_r \varphi)) \\ 16. \models I_r a(a, r, o_i) \wedge E_{ar} incharge(o_i, q, \varphi))$$

TUDelft

Safe reorganization

Theorem 1. Given $O_i = (As_i, R_i, rea_i, \leq_i, D_i, Obj_i, K_i)$ and a semantic model M_O , a safe reorganization Reorg, is such that: $M_O, w \models WD(o_i) \land Reorg \rightarrow \mathcal{X}WD(o_i)$ $M_O, w \models SU(o_i) \land Reorg \rightarrow \mathcal{X}SU(o_i)$ $M_O, w \models GO(o_i) \land Reorg \rightarrow \mathcal{X}GO(o_i)$ $M_O, w \models EF(o_i) \land Reorg \rightarrow \mathcal{X}EF(o_i)$ $M_O, w \models RES(o_i) \land Reorg \rightarrow \mathcal{X}RES(o_i)$

Implementing Organization

'Balancing' agents and organizations

- Assuming agents to be heterogeneous entities
 - Different architectures
 - Independent from social design
 - Joining organization as means to fulfill own goals
 - No guarantee on truthfulness, cooperation, ...
- Means are needed to ascertain organizational operation
 - Negotiation scenes
 - Contracts

Approaches to AOS design

- Implicit:
 - organization emerges (is observable) from the agents' behaviour
- Explicit:
 - Organization model is first order entity, independent from agents
- Internal
 - organization model is embedded in the agents
- External
 - Shared representation of organization model, outside agents

Our Approach: External – Explicit Integrating Regulation with Autonomy

- Internal autonomy requirement:
 - Specify organization independently from the internal design of the agent
 - Enables open systems
 - heterogeneous participation
- Collaboration autonomy requirement:

Specify organizations without fixing a priori all structures, interactions and protocols

- Enables evolving societies
- Balances organizational needs and agent autonomy

OperA Model

- Components for organization specification
 - Organizational Model
 - represents organizational aims and requirements
 - roles, interaction structures, scene scripts, norms
 - Social Model
 - represents agreements concerning participation of individual agents ('job' contracts for agents)
 - Interaction Model
 - represents agreements concerning interaction between the agents themselves ('trade' contracts between reas)

OperettA: Organisation model specification and verification

OperA+

• Work of Jie Jiang (2009-present)

- Agent organization modeling framework
- Addresses different aspects
 - Organizational model
 - Social model
 - Interaction model
- Aimed at multi-organizational collaboration (OperA+)
 - Multi-level: business values to operational details
 - Multi-context: different application environments

Organisation contextualisation and refinement

29

2. Regulation

• Formal / computational social reasoning

- Socially intelligent agents (norms, emotions, culture...)
- Institutional analysis and design
- Value-sensitive Software Engineering Systems and Services
 - Norms engineering: from abstract values to implemented rules
- Application areas
 - Compliance Engineering
 - Security and trust
- Tools/Methods: OperA+ / VSSD

Norms in OperA+

- Norm definition based on ADICO (Elinor Ostrom)
- Formally anorm is defined as a tuple n = (D; rap; d; p) where:
- D = {O;F;P} indicates the deontic type of the norm, i.e., Obliged, Forbidden, and Permitted;
- rap = (r, a), the target, a role action pair;
- $d \in RAP$, describing the deadline;
- $p \in LRAP$, describing the precondition;
- Norm Net
 - NN ::= norm | NN AND NN | NN OR NN | NN OE NN

Query Compliance

TUDelft

Normative Compliance

3. Intention

- Intelligent agents
 - Social interaction and coordination
 - Reason about own role / others role
- Rich cognitive models
 - culture, norms, personality effect on reasoning
- Applications
 - Human-agent-robot teams;
 - Healthy Lifestyle solutions / Coaching systems
 - Gaming
 - Social Simulation
- Tools/Methods: BRIDGE / ABCLab / MAIA

The people in the loop

Participatory design

- Value-sensitive design
- Engineering with stakeholders
 - Rapid prototyping
 - User-friendly development environments

HA(R)T (human-agent-robot teamwork)

- Hybrid teams
- Human-agent collaboration within MAS
- Ethical / responsibility issues

Social Actors Development: From Agents to Partners

- Intentionality
 - Purpose, autonomy
- Social awareness
 - With others, despite others, for others, using others
- Values as basic 'constructs'
- Culture, personality, context as 'modifiers'

Elements of rich agent models

- Rational: Goal-directed
- Social: Culture and norms
- Personality: Individual differences
- Physiological: Hierarchy of needs/urges
- Emotional: reaction to a perceived situation
- Resulting behaviour
 - Perceived social environment
 - Possible worlds foreseen
 - Emotions and goals drive decision making and perception of current state

Conclusion

• Interaction of (intelligent) autonomous entities

- Common goals / Shared resources
- Own reasoning
- Separation of concerns
 - Global vs. individual (organisation vs. agent)
 - Design vs. simulation vs. deployment
- Human-agent collaboration
 - Norms, values
 - Communication / understanding
- Open, dynamic environments
 - Co-evolution
- Cost-benefit: Not 'one size fits all'

